Morphogenesis by coupled regulatory networks

نویسندگان

  • Thimo Rohlf
  • Stefan Bornholdt
چکیده

Based on a recently proposed non-equilibrium mechanism for spatial pattern formation [13] we study how morphogenesis can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism. As an example we study the developmental problem of domain formation and proportion regulation in the presence of noise and cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. A further focus of this paper is a detailed study of noise-induced dynamics, which is a major ingredient of the control dynamics in the developmental network model. A master equation for domain boundary readjustments is formulated and solved for the continuum limit. Evidence for a first order phase transition in equilibrium domain size at vanishing noise is given by finite size scaling. A second order phase transition at increased cell flow is studied in a mean field approximation. Finally, we discuss potential applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Regulatory in Price Control and Spectrum Allocation to Competing Wireless Access Networks

With the rapid growth of wireless access networks, various providers offer their services using different technologies such as Wi-Fi, Wimax, 3G, 4G and so on. These networks compete for the scarce wireless spectrum. The spectrum is considered to be a scarce resource moderated by the spectrum allocation regulatory (“regulatory” for short) which is the governance body aiming to maximize the socia...

متن کامل

Data-driven modelling of a gene regulatory network for cell fate decisions in the growing limb bud

Parameter optimization coupled with model selection is a convenient approach to infer gene regulatory networks from experimental gene expression data, but so far it has been limited to single cells or static tissues where growth is not significant. Here, we present a computational study in which we determine an optimal gene regulatory network from the spatiotemporal dynamics of gene expression ...

متن کامل

Encoding anatomy: developmental gene regulatory networks and morphogenesis.

A central challenge of developmental and evolutionary biology is to explain how anatomy is encoded in the genome. Anatomy emerges progressively during embryonic development, as a consequence of morphogenetic processes. The specialized properties of embryonic cells and tissues that drive morphogenesis, like other specialized properties of cells, arise as a consequence of differential gene expres...

متن کامل

transsys: A Generic Formalism for Modelling Regulatory Networks in Morphogenesis

The formal language transsys is introduced as a tool for comprehensively representing regulatory gene networks in a way that makes them accessible to ALife modelling. As a first application, Lindenmayer systems are enhanced by integration with transsys. The resulting formalism, called Ltranssys, is used to implement the ABC model of flower morphogenesis. This transsys ABC model is extensible an...

متن کامل

Essential role of developmentally activated hypoxia-inducible factor 1alpha for cardiac morphogenesis and function.

Development of the mammalian heart is governed by precisely orchestrated interactions between signaling pathways integrating environmental cues and a core cardiac transcriptional network that directs differentiation, growth and morphogenesis. Here we report that in mice, at about embryonic day (E)8.5 to E10.0, cardiac development proceeds in an environment that is hypoxic and characterized by h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004